# Airline Economics Chapter 3

SYST 461/660 OR 750 Spring 2010

#### Sources:

The Global Airline Industry
Peter Belobaba, Amedeo Odoni, Cynthia Barnhart, MIT, *Library of Flight Series*Published by John Wiley & Sons, © 2009, 520 pages, Hardback



#### Outline

- Basic Terminology and Measures for Airline Economics
- Basic Airline Profit Equation and Airline Profit Maximizing Strategies
- Typical Passenger Trip Process
- Airline Markets
- Dichotomy of Supply and Demand
- O-D Demand
  - Factors affecting O-D Demand
  - Total Trip Time Model
  - Demand Models
  - O-D Market Demand Functions
- Airline Competition and Market Share
  - Market Share/ Frequency Share Model
- Price/ Time Elasticity of Demand
  - Air Travel Demand Segments



# Four Types of Traffic





# "Airline Traffic" – Amount of airline output that is actually consumed or sold

| 4 Types of Traffic | Passenger Aircraft | Cargo "Freighter" Aircraft |  |  |  |  |  |
|--------------------|--------------------|----------------------------|--|--|--|--|--|
| Passengers         | X                  |                            |  |  |  |  |  |
| Passenger Bags     | X                  |                            |  |  |  |  |  |
| Air Freight        | X                  | ×                          |  |  |  |  |  |
| Mail               | X                  | X                          |  |  |  |  |  |

Focus of this lesson is on Passenger Traffic



# Airline System-Wide Measures

- Traffic Enplaned Passengers
  - RPM = Revenue Passenger Mile
    - One paying passenger transported 1 mile
  - Yield = Revenue per RPM
    - Average fare paid by passengers, per mile flown
  - PDEW = Passenger trips per day each way
    - A common way to measure O-D market demand
- Airline Demand = Traffic + "Rejected Demand"
  - "Rejected Demand" or "Spill" = Passengers unable to find seats to fly
- Airline Supply
  - ASM = Available Seat Mile
    - One aircraft seat flown one mile
  - Unit Cost = Operating Expense per ASM ("CASM")
    - Average operating cost per unit of output
- Airline Performance
  - Average Load Factor (LF)= RPM/ASM
    - Average Leg Load Factor (ALLF) =  $\Sigma$  LF/ # of Flights
    - Average Network or System Load Factor (ALF) =  $\Sigma$ RPM/ $\Sigma$ ASM
  - Unit Revenue = Revenue/ASM ("RASM")
  - Total Passenger Trip Time



#### **US Domestic Traffic (Revenue Passenger Miles) Source: BTS**



#### **US Domestic Supply (Available Seat Miles) Source: BTS**



#### **US Domestic Average Network Load Factors Source: BTS**





#### Yield versus Distance





#### Additional Airline Measures

#### Average Stage Length

- Average non-stop flight distance
- Aircraft Miles Flown/ Aircraft Departures
- Longer average stage lengths associated with lower yields and lower unit costs (in theory)

#### Average Passenger Trip Length

- Average distance flown from origin to destination
- Revenue Passenger Miles (RPM)/ Passengers
- Typically greater than average stage length, since some proportion of passengers will take more than one flight (connections)

#### Average Number of Seats per Flight Departure

- Available Seat Miles (ASM)/ Aircraft Miles Flown
- Higher average seats per flight associated with lower unit costs (in theory)

# **Basic Airline Profit Equation**

Operating Profit =

RPM x Yield – ASM x Unit Cost (Revenue) – (Operating Expenses)

- Use of any of the individual terms as indicators of airline success can be misleading
  - High Yield is not desirable if ALF is too low
  - Low unit cost is of little value if Revenues are weak
  - High ALF can be the result of selling a large proportion of seats at low fares





# Airline Profit Maximizing Strategies

|                                      | Intended Benefit            | Strategy Pitfalls                                                                        |  |  |  |  |
|--------------------------------------|-----------------------------|------------------------------------------------------------------------------------------|--|--|--|--|
| Cutting Fares/ Yields                | Stimulate Demand            | The price cut must generate a disproportional increase in total demand, "elastic demand" |  |  |  |  |
| Increasing Fares/ Yields             | Increase Revenue            | The price increase can be revenue positive if demand is "inelastic"                      |  |  |  |  |
| Increase Flights (ASM)               | Stimulate Demand            | Increases Operational Costs                                                              |  |  |  |  |
| Decrease Flights (ASM)               | Reduce Operational<br>Costs | Lower Frequencies made lead to market share losses and lost demand                       |  |  |  |  |
| Improve Passenger<br>Service Quality | Stimulate Demand            | Increases Operational Costs                                                              |  |  |  |  |
| Reduce Passenger<br>Service Quality  | Reduce Operational<br>Costs | Excessive cuts can reduce market share and demand                                        |  |  |  |  |



#### **US Airline Historical Reported Profits/ Losses (source BTS)**



# Typical Air Passenger Trip



# Enplanement/ Deplanement

#### Enplanement

- 1. Purchasing Tickets
- 2. Boarding Pass
- 3. Checking Baggage
- 4. Undergoing Security Inspections
- 5. Boarding Airplane

#### Deplanement

- 1. Exiting Airplane
- 2. Exiting Terminal
- 3. Baggage Retrieval
- 4. Immigration and Customs Inspections



### Airline Supply Terminology

- Flight Leg (or "flight sector" or "flight segment")
  - Non-stop operation of an aircraft between A and B, with associated departure and arrival times
- Flight
  - One or more flight legs operated consecutively by a single aircraft (usually) and labeled with a single flight number (usually)
- Route
  - Consecutive links in a network served by single flight numbers
- Passenger Paths or Itineraries
  - Combination of flight legs chosen by passengers in a O-D market to complete a journey



#### **Airline Markets**

- The purpose of each air trip is to move from the "true" origin to the "true" destination of the passenger.
- There is typically an outbound and inbound portion of passenger air trips.
  - In the Air Transportation System Typically ArrivalDepartures
- Direct/ Connecting Flights



#### **Distinct and Separate Origin – Destination Markets**



- <u>Catchment Area</u> an area which contains all the origin points of travelers
- An airport's **catchment area** can extend for hundreds of kilometers and can vary with the destination and trip purpose of the traveler
- The market for air services from A to C is distinct and separate from the market

#### **Air Travel Markets**

- Opposite Markets passengers who originate their trips from the destination airport region.
- Parallel Markets the flight operations serving each parallel market can to some extent substitute for each other
- **City-Pair Markets** Demand for air travel between two cities
- Region-Pair Markets Demand for air travel between two regions or metropolitan areas
- Airport-Pair Markets "Parallel" City-Pair and Region-Pair Markets
  Demand can be disaggregated to different airports serving the
  cities or regions
- ➤ With the existence of overlapping airport regions, parallel markets, and the sharing of scheduled airline supply on connecting flights, even "distinct" and "separate" origin-destination markets are interrelated



# Connecting versus Direct Traffic





### Airline Markets Example

| Market  | Itinerary   | Segment<br>/ Leg | Airline   | Seats | PAX | Connecti<br>ng PAX | O-D<br>Traffic | %<br>Connecting | Load<br>Factor | Daily<br>Freq |
|---------|-------------|------------------|-----------|-------|-----|--------------------|----------------|-----------------|----------------|---------------|
| IAD-BOS | IAD-BOS     | IAD-BOS          | Airline 1 | 100   | 50  | N/A                | 50             | N/A             | .5             | 2             |
| IAD-BOS | IAD-PHL-BOS | IAD-PHL          | Airline 1 | 150   | 100 | 75                 | 25             | 75%             | .67            | 4             |
|         | IAD-PHL-BOS | PHL-BOS          | Airline 1 | 100   | 75  | N/A                | 75             | N/A             | .75            | 4             |
| IAD-BOS | IAD-JFK-BOS | IAD-JFK          | Airline 2 | 200   | 150 | 50                 | 100            | 50%             | .75            | 2             |
|         | IAD-JFK-BOS | JFK-BOS          | Airline 2 | 100   | 50  | N/A                | 50             | N/A             | .5             | 2             |
| IAD-BOS | IAD-BOS     | IAD-BOS          | Airline 2 | 100   | 75  | N/A                | 75             | N/A             | .75            | 3             |
| IAD-PIT | IAD-BOS-PIT | IAD-BOS          | Airline 2 | 200   | 100 | 25                 | 75             | 50%             | .5             | 1             |
|         | IAD-BOS-PIT | BOS-PIT          | Airline 2 | 150   | 75  | N/A                | 75             | N/A             | .5             | 1             |

- > For this example no additional passengers are boarding at the connection
- Frequency Share for IAD-BOS –

- Airline 
$$1 = 2/6 = 33\%$$
, Airline  $2 = 4/6 = 67\%$ 

Market Share for IAD-BOS –

- Airline 
$$1 = ((2x50)+(4x75))/((2x50)+(4x75)+(2x50)+(3x75)+(1x75)) = 50\%$$

• "Market" O-D Traffic for IAD-BOS = ((2x50)+(4x75)+(2x50)+(3x75)+(1x25)) = 750

• "Segment" or "Leg" O-D Supply for IAD-BOS = ((2x100)+(3x100)+(1x200)) = 700



### Airline Markets Example

| Market  | Itinerary   | Segment<br>/ Leg | Airline   | Seats | PAX | Connecti<br>ng PAX | O-D<br>Traffic | %<br>Connecting | Load<br>Factor | Daily<br>Freq |
|---------|-------------|------------------|-----------|-------|-----|--------------------|----------------|-----------------|----------------|---------------|
| IAD-BOS | IAD-BOS     | IAD-BOS          | Airline 1 | 100   | 50  | N/A                | 50             | N/A             | .5             | 2             |
| IAD-BOS | IAD-PHL-BOS | IAD-PHL          | Airline 1 | 150   | 100 | 75                 | 25             | 75%             | .67            | 4             |
|         | IAD-PHL-BOS | PHL-BOS          | Airline 1 | 100   | 75  | N/A                | 75             | N/A             | .75            | 4             |
| IAD-BOS | IAD-JFK-BOS | IAD-JFK          | Airline 2 | 200   | 150 | 50                 | 100            | 50%             | .75            | 2             |
|         | IAD-JFK-BOS | JFK-BOS          | Airline 2 | 100   | 50  | N/A                | 50             | N/A             | .5             | 2             |
| IAD-BOS | IAD-BOS     | IAD-BOS          | Airline 2 | 100   | 75  | N/A                | 75             | N/A             | .75            | 3             |
| IAD-PIT | IAD-BOS-PIT | IAD-BOS          | Airline 2 | 200   | 100 | 25                 | 75             | 50%             | .5             | 1             |
|         | IAD-BOS-PIT | BOS-PIT          | Airline 2 | 150   | 75  | N/A                | 75             | N/A             | .5             | 1             |

- > For this example no additional passengers are boarding at the connection
- **RPM** = (2x50x1)+(4x100x1)+(4x75x1)+(2x150x1)+(2x50x1)+(3x75x1)+(1x100x1)+(1x75x1) = 1600
- **ASM** = (2x100x1)+(4x150x1)+(4x100x1)+(2x200x1)+(2x100x1)+(3x100x1)+(1x200x1)+(1x150x1) = 2450
- ALLF for IAD-BOS = (2x.5)+(3x.75)+(1x.5)/6 = .625
- ALF for this network for this example all flight legs are 1 unit of distance
   = RPM/ASM = 1600/2450 = .653





# Origin-Destination Market Demand

- Air travel demand is defined for an origin-destination market, not a flight leg in an airline network
  - Number of persons wishing to travel from origin A to destination B during a given time period
  - Includes both passengers starting their trip at A and those completing their travel by returning home (opposite markets)
  - Typically, volume of travel measured in one-way passenger trips between A and B, perhaps summed over both directions
- Airline networks create complications for analysis of market demand and supply
  - Not all A-B passengers will fly on non-stop flights from A to B, as some will choose one-stop or connecting paths
  - Any single non-stop flight leg A-B can also serve many other O-D markets, as part of connecting or multiple-stop paths



# Dichotomy of Demand and Supply

- Inherent inability to directly compare demand and supply at the "market" level
- Demand is generated by O-D market, while supply is provided as a set of flight leg departures over a network of operations
- One flight leg provides joint supply of seats to many O-D markets
  - Number of seats on the flight is not the "supply" to a single market
  - Not possible (or realistic) to determine supply of seats to each O-D
- Single O-D market served by many competing airline paths
  - Tabulation of total O-D market traffic requires detailed ticket coupon analysis



# Implications for Analysis

- Dichotomy of airline demand and supply complicates many facets of airline economic analysis
- Difficult, in theory, to answer seemingly "simple" economic questions, for example:
  - Because we cannot quantify "supply" to an individual O-D market, we cannot determine if the market is in "equilibrium"
  - Cannot determine if the airline's service to that O-D market is "profitable", or whether fares are "too high" or "too low"
  - Serious difficulties in proving predatory pricing against low-fare new entrants, given joint supply of seats to multiple O-D markets and inability to isolate costs of serving each O-D market
- In practice, assumptions about cost and revenue allocation are required:
  - Estimates of flight and/or route profitability are open to question



#### **Demand Models**

- Demand models are mathematical representations of the relationship between demand and explanatory variables:
  - Based on our assumptions of what affects air travel demand
  - Can be linear (additive) models or non-linear (multiplicative)
  - Model specification reflects expectations of demand behavior (e.g., when prices rise, demand should decrease)
- A properly estimated demand model allows airlines to more accurately forecast demand in an O-D market:
  - As a function of changes in average fares
  - Given recent or planned changes to frequency of service
  - To account for changes in market or economic conditions



#### **Airline Demand**

- Demand for carrier flight f of carrier i in OD market j is a function of:
  - Characteristics of flight f
    - Departure time, travel time, expected delay, aircraft type, in-flight service, etc.
    - Price
  - Characteristics of carrier i
    - Flight schedule in market j (frequency, timetable), airport amenities of carrier, frequent flyer plan attractiveness, etc.
  - Market characteristics
    - Distance, business travel between two cities, tourism appeal
  - Characteristics (including price) of all rival products:
    - Other flights on carrier i
    - Flights on other carriers in market j (carrier and flight characteristics)
    - Competing markets' products (other airports serving city-pair in j, other transport modes, etc.)



### Total Trip Time from Point A to B

- Next to price of air travel, most important factor affecting demand for airline services:
  - Access and egress times to/from airports at origin and destination
  - Pre-departure and post-arrival processing times at each airport
  - Actual flight times plus connecting times between flights
  - Schedule displacement or wait times due to inadequate frequency
- Total trip time captures impacts of flight frequency, path quality relative to other carriers, other modes.
  - Reduction in total trip time should lead to increase in total air travel demand in O-D market
  - Increased frequency and non-stop flights reduce total trip time
  - Increases in total trip time will lead to reduced demand for air travel, either to alternative modes or the "no travel" option



# Total Trip Time and Frequency

- T = t(fixed) + t(flight) + t(schedule displacement)
  - Fixed time elements include access and egress, airport processing
  - Flight time includes aircraft "block" times plus connecting times
  - Schedule displacement = (K hours / frequency), meaning it decreases with increases in frequency of departures
- This model is useful in explaining why:
  - Non-stop flights are preferred to connections (lower flight times)
  - More frequent service increases travel demand (lower schedule displacement times)
  - Frequency is more important in short-haul markets (schedule displacement is a much larger proportion of total T)
  - Many connecting departures through a hub might be better than 1 non-stop per day (lower total T for the average passenger)



# Total Trip Time Example

- With Uniform Passenger Demand
- Flight times highlighted in Yellow

| wait times |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |         |
|------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------|
|            | 0600 | 0700 | 0800 | 0900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500 | 1600 | 1700 | 1800 | 1900 | 2000 | 2100 | 2200 | Average |
| 1 flight   | 10   | 9    | 8    | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 4.47    |
| 2 flights  | 4    | 3    | 2    | 1    | 0    | 1    | 2    | 3    | 4    | 3    | 2    | 1    | 0    | 1    | 2    | 3    | 4    | 2.12    |
| 3 flights  | 3    | 2    | 1    | 0    | 1    | 2    | 2    | 1    | 0    | 1    | 2    | 2    | 1    | 0    | 1    | 2    | 3    | 1.41    |
| 4 flights  | 2    | 1    | 0    | 1    | 2    | 1    | 0    | 1    | 2    | 1    | 0    | 1    | 2    | 1    | 0    | 1    | 2    | 1.06    |

Increased Frequency reduces Passenger Total Trip Time and Increases Demand



# Simple Market Demand Function

 Multiplicative model of demand for travel O-D per period:

$$D = M \times P^a \times T^b$$

where: M = market sizing parameter (constant) that represents underlying population and interaction between cities

P = average price of air travel

T = total trip time, reflecting changes in frequency

a,b = price and time elasticities of demand

- We can estimate values of M, a, and b from historical data sample of D, P, and T for same market:
  - Previous observations of demand levels (D) under different combinations of price (P) and total travel time (T)



# Multiple Demand Segments

|                       | Business Air Travel Demand | Personal Air<br>Travel<br>Demand |  |  |  |  |
|-----------------------|----------------------------|----------------------------------|--|--|--|--|
| First Class           | D <sub>fb</sub>            | Defination                       |  |  |  |  |
| Coach Class           | D <sub>cb</sub>            | D <sub>cp</sub>                  |  |  |  |  |
| <b>Discount Class</b> | D <sub>db</sub>            | D <sub>dp</sub>                  |  |  |  |  |



### **Airline Competition**

- Airlines compete for passengers and market share based on:
  - Frequency of service and departure schedule on each route served
  - Price charged, relative to other airlines, to the extent that regulation allows for price competition
  - Quality of service and products offered --airport and in-flight service amenities and/or restrictions on discount fare products
- Passengers choose combination of flight schedules, prices and product quality that minimizes disutility of air travel:
  - Each passenger would like to have the best service on a flight that departs at the most convenient time, for the lowest price



# Market Share / Frequency Share

- Rule of Thumb: With all else equal, airline market shares will approximately equal their frequency shares.
- But there is much empirical evidence of an "S-curve" relationship as shown on the following slide:
  - Higher frequency shares are associated with disproportionately higher market shares
  - An airline with more frequency captures all passengers wishing to fly during periods when only it offers a flight, and shares the demand wishing to depart at times when both airlines offer flights
  - Thus, there is a tendency for competing airlines to match flight frequencies in many non-stop markets, to retain market share



#### MS vs. FS "S-Curve" Model



#### S-Curve Model Formulation

$$\text{MS(A)} = \underbrace{ \text{FS(A)}^{\alpha}}_{\text{FS(A)}^{\alpha}} + \text{FS(C)}^{\alpha} + \text{FS(C)}^{\alpha} + \dots$$
 where 
$$\text{MS(i)} = \max_{\text{rest share of airline i}}_{\text{FS(i)}} = \max_{\text{rest share of airline i}}_{\text{constant}} = \exp_{\text{onent greater than I.O, and generally between I.3 and I.7}$$

#### Airline Prices and O-D Markets

- Like air travel demand, airline fares are defined for an O-D market, not for an airline flight leg:
  - Airline prices for travel A-B depend on O-D market demand, supply and competitive characteristics in that market
  - No economic theoretical reason for prices in market A-B to be related to prices A-C, based strictly on distance traveled
  - Could be that price A-C is actually lower than price A-B
  - These are different markets with different demand characteristics, which might just happen to share joint supply on a flight leg
- Dichotomy of airline demand and supply makes finding an equilibrium between prices and distances more difficult.



### Price Elasticity of Demand

- Definition: Percent change in total demand that occurs with a 1% increase in average price charged.
- Price elasticity of demand is always negative:
  - A 10% price increase will cause an X% demand decrease, all else being equal (e.g., no change to frequency or market variables)
  - Business air travel demand is slightly "inelastic" (0 > Ep> -1.0)
  - Leisure demand for air travel is much more "elastic" (Ep< -1.0)</li>
  - Empirical studies have shown typical range of airline market price elasticities from -0.8 to -2.0 (air travel demand tends to be elastic)
  - Elasticity of demand in specific O-D markets will depend on mix of business and leisure travel



# Implications for Airline Pricing

- Inelastic (-0.8) business demand for air travel means less sensitivity to price changes:
  - 10% price increase leads to only 8% demand reduction
  - Total airline revenues increase, despite price increase
- Elastic (-1.6) leisure demand for air travel means greater sensitivity to price changes
  - 10% price increase causes a 16% demand decrease
  - Total revenues decrease given price increase, and vice versa
- Recent airline pricing practices are explained by price elasticities:
  - Increase fares for inelastic business travelers to increase revenues
  - Decrease fares for elastic leisure travelers to increase revenues



# Time Elasticity of Demand

- Definition: Percent change in total O-D demand that occurs with a 1% increase in total trip time.
- Time elasticity of demand is also negative:
  - A 10% increase in total trip time will cause an X% demand decrease, all else being equal (e.g., no change in prices)
  - Business air travel demand is more time elastic (Et < -1.0), as demand can be stimulated by improving travel convenience
  - Leisure demand is time inelastic (Et > -1.0), as price sensitive vacationers are willing to endure less convenient flight times
  - Empirical studies show narrower range of airline market time elasticities from -0.8 to -1.6, affected by existing frequency



# Implications of Time Elasticity

- Business demand responds more than leisure demand to reductions in total travel time:
  - Increased frequency of departures is most important way for an airline to reduce total travel time in the short run
  - Reduced flight times can also have an impact (e.g., using jet vs. propeller aircraft)
  - More non-stop vs. connecting flights will also reduce T
- Leisure demand not nearly as time sensitive:
  - Frequency and path quality not as important as price
- But there exists a "saturation frequency" in each market:
  - Point at which additional frequency does not increase demand



#### **Examples of Price Elasticity**

#### EWR-ORD (BTS 2008 2QTR)



#### **EWR-BOS (BTS 2008 2QTR)**



#### **EWR-PIT (BTS 2008 2QTR)**



#### EWR-SFO (BTS 2008 2QTR)



Source: BTS

# Air Travel Demand Segments





# Different Types of Passengers

- Type 1 Time sensitive and insensitive to Price
  - Business Travelers, who might be willing to pay premium price for extra amenities
  - Travel flexibility and last minute seat availability extremely important
- Type 2 Time sensitive and Price sensitive
  - Some Business Travelers, must make trip, but are flexible to secure reduced fare
  - Cannot book far enough in advance for lowest fares
- Type 3 Price sensitive and insensitive to Time
  - Classic Leisure or vacation travelers, willing to change time and day of travel and airport to find seat at lowest possible fare
  - Willing to make connections
- Type 4 Insensitive to both Time and Price
  - Few passengers who are willing to pay for high levels of service.
  - Can be combined with Type 1

